

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME	Dhruv		
CENTRE NUMBER		CANDIDATE NUMBER	
COMPUTER SO Paper 1 Theory			0478/11 May/June 2017
	wer on the Question Paper. aterials are required.		1 hour
No calculators a	llowed.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

No marks will be awarded for using brand names of software packages or hardware.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 75.

The memory of a computer contains data and instructions in binary.

The following instruction is stored in a location of the memory.

1

0	0	1	0	1	0	0	1	1	1	1	1	1	1	0	0
(a)	Conve	rt the	instrud	ction i	nto he	xaded	imal.								
(b)	Explai binary.		a pro	gramn	ner m	ight pı	refer to	reac	d the i	nstruc	tion ir	n hexa	decim	nal rat	her th
(c)	Give to							•••••							
(6)	Use 1														
	Use 2														
			• • • • • • • • • • • • • • • • • • • •												
Pro	gramme	ers cai	n use	a high	-level	langu	age to	write	a cor	npute	r prog	ram.			
(a)	Explai	n wha	t is me	eant by	y the t	erm 'h	nigh-le	vel la	nguag	je'.					

(b)	A program written in a high-level language is translated into machine code. This is so that it can be processed by a computer.
	Name one type of translator that can be used.
	[1]
(c)	Describe how your answer to part (b) translates this program.
	[3]

3 Steffi has a number of files of different sizes that contain her work.

Tick $(\ensuremath{\checkmark})$ to show whether each statement is **true** or **false**.

Statement	true (√)	false (√)
47KB is larger than 10MB.		
250bytes is smaller than 0.5MB.		
50GB is larger than 100MB.		
1TB is smaller than 4GB.		

4 Five statements about **serial half-duplex** data transmission are shown in the table below.

Tick (\checkmark) to show whether each statement is **true** or **false**.

Statement	true (✓)	false (√)
Data is transmitted in one direction only, one bit at a time.		
Data is transmitted in both directions, multiple bits at a time.		
Data is transmitted in one direction only, multiple bits at a time.		
Data is transmitted in both directions, but only one direction at a time. Data is transmitted one bit at a time.		
Data is transmitted in both directions, but only one direction at a time. Data is transmitted multiple bits at a time.		

5 (a) Parity checks are often used to detect errors that may occur during data transmission.

The received bytes in the table below were transmitted using **odd parity**.

Tick $(\ensuremath{\checkmark})$ to show whether each byte has been **corrupted during transmission** or **not corrupted during transmission**.

Received byte	corrupted during transmission (√)	not corrupted during transmission (✓)
10110100		
01101101		
10000001		

(b) Another method of error detection is Automatic Repeat reQuest (ARQ).

Explain how ARQ is used in error detection.

[3]

Signals are sent to and from the components of a processor using buses.	
Identify and describe the purpose of two different buses.	
Bus 1	
Purpose	
Bus 2	
Purpose	
	[6

_		_	_	_				
7	Civ	security term	ne and	civ	ctatamante	arol	lictad	halaw
	JIX	SECULITY LELLI	ıə arıu	SIA	Statements	alti	แอเซน	DEIDM

Proxy server

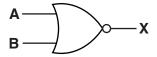
Draw a line to match the security term with the most appropriate statement.

Security term Statement Provides a secure connection between Encryption web browsers and websites allowing secure transmission of private data. Computer that acts as an intermediary Secure Socket between a web browser and the Layer (SSL) Internet. Legitimate-looking email is sent in the hope of gathering personal information; Pharming it requires the user to click on a link in the email. Uses rules and criteria, set by the user, to help protect a network or system from Phishing unauthorised access. Malicious code installed on the hard drive of a user's computer; this code Firewall will redirect the user to a fake website without the user's knowledge.

Scrambles data for secure transmission.

_						
8	Complete the	paragraph by	choosing	six correct	terms from	n the list.

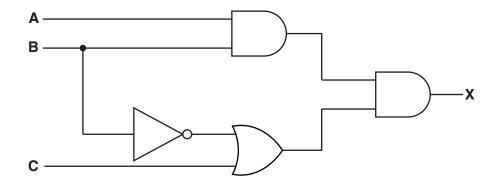
- Optical On-line RAM


- HAM HDD Primary SSD Secondary ROM Off-line

A computer has two different types of memory	memory	is not directly
accessed by the CPU, but it allows a user to store da	ata that can easily be accessed b	y applications.
Two examples of this type of memory are	and	The
second type of memory is	memory. This memory is directly	accessed by
the CPU. It allows the processor to access data ar	nd instructions that are stored in	this memory.
Two examples of this memory are	and	

A supermarket has a system that allows customers to check out their own shopping.
Identify and describe the purpose of two input devices and one output device used in this system.
Input device 1
Purpose
Input device 2
Purpose
Output device 1
Purpose

10 (a) Complete the truth table for the NOR gate.


9

A	В	Output (X)
0	0	
0	1	
1	0	
1	1	

[6]

(b) Write a logic statement that corresponds with the following logic circuit.

	X =[3]
11	State three functions provided by an operating system.
	Function 1
	Function 2
	Function 3

[3]

12 The processes in a chemical factory are monitored by sensors connected to a microprocessor.

(a)	Identify two different sensors used in this application. Give an example of how each sensor could be used in the chemical factory.	or
	Sensor 1	
	Use	
	Sensor 2	
	Use	
		 4]
(b)	Describe how the sensors and a microprocessor are used to monitor a process.	
	[5]

13	(a)	Gur	deep wants to send a large file to Jennifer over the Internet.	
		Stat	te two benefits of compressing the file to send it.	
		Ben	efit 1	
		Ron	efit 2	
			GIL Z	
		•••••		[2]
	(b)	Two	types of compression are lossy and lossless.	
		Cho	ose the most suitable type of compression for the following and explain your choice.	
		(i)	Downloading the code for a computer program:	
			Type of compression	
			Explanation	
				[3]
		(ii)	Streaming a video file:	
			Type of compression	
			Explanation	
				[3]