Maths Revision Test 10 Time : 60 mins Max Marks : 40

Q1.

- (a) Determine whether (x+1) is a factor of polynomial $x^4 + x^3 + x^2 + x + 1$ 3 marks
- (b) Expand using suitable identity (2x y +2z)².3 marks
- Q2. Solve:
 - (i) Factorize (64a³.- 343b³)
 - (ii) Show how $\sqrt{5}$ can be represented in number line.
 - 6 marks

Q3. In the figure $\angle X = 62^{\circ}$, $\angle XYZ = 54^{\circ}$, if YO and ZO are the bisectors of $\angle XYZ$ and $\angle XZY$ respectively of $\triangle XYZ$. Find $\angle OZY$ and $\angle YOZ$.

Q4 In figure if AB || CD and CD || EF and y : z = 3:7, find x

Q5 In the adjoining figure, sides AB and AC of \triangle ABC are extended to point P and Q respectively. Also \angle PBC < \angle QCB. Show that AC>AB.

3 marks

Q6. ABCD is a rectangle in which diagonal AC bisects $\angle A$ as well as $\angle C$. Show that

- i) ABCD is a square.
- ii) Diagonal BD bisects $\angle B$ as well as $\angle D$.

. 3 marks

Q7. ABCD is a trapezium in which AB || CD, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F. Show that F is the mid-point of BC.

4 marks

Q8. If two circles intersect at two points, prove that their centers lie on the perpendicular bisector of the common chord.

4 marks

Q9. A chord of circle is equal to its radius. Find the angle subtended by a chord at a point on the minor arc and also at the point on the major arc.

4 marks

Q 10 a) In the figure, A, B C and D are four points on a circle. AC and BD intersect at point E such that $\angle BEC = 120^{\circ}$ and $\angle EOD = 20^{\circ}$. Find $\angle BAC$

1 mark

b) Visualize 2.755 on the number line using successive magnification.

2 marks