

VYDEHI SCHOOL OF EXCELLENCE MID -TERM EXAMINATION (2019-20)

SUBJECT: MATHEMATICS CLASS: X

Date: 05/08/2019

Time: 3 Hours

Maximum Marks: 80

 $(20 \times 1 = 20)$

General	Instructions	_

- Please read all the questions carefully.
- All questions are compulsory. Do draw an ending line after each answer.
- Do not copy the questions. Mention only the question numbers.
- This question paper consists of four sections A,B,C and D. Section A consists of 1 mark questions,
 Section B consists of 2 marks questions, Section C consists of 3 marks questions, and Section D consists of 4 marks questions.

			1				
			SECTION-A				
(1.	If the sum of n terms of an A.P. be $3n^2 + n$ and its common difference is 6, then its first term is						
	a) 5	b) 3	c) 1	d) 4			
2.	If the distance between the points (4,p) and (1,0) is 5, then p=						
	a) ± 4	b) 4	c) -4	d) 0			
3.	The value of k for which the system of equations $2x + 3y = 5$ and, $4x + ky = 10$ has infinite number of solutions is						
	a) 1	b) 3	c) 6	d) 0			
4.	Sides of two similar triangles are in ratio 4: 9. Areas of these triangles are in ratio						
	a) 2:3	b) 4:9	c) 81:16	d) 16:81			
5.	If the sum of the zeros of the polynomial $f(x) = 2x^3 - 3kx^2 + 4x - 5$ is 6, then the value of k is						
	a) 2	b) 4	c) -2	d) -4			
6.	The LCM of two numbers is 1200. Which of the following cannot be their HCF?						
	a) 600	b) 500	c) 400	d) 200	_		
7.	If A and B are complementary angles, then						
	a) $\sin A = \sin B$		b) cos A =		7		
	c) $\tan A = \tan B$		d) sec A =	cosec B			
8.	the third zero is	e cubic polynomial	$ax^3 + bx^2 + cx + d ar$	e each equal to zer	ro, then		
	a) $-\frac{d}{}$	b) <u>c</u>	c) $-\frac{b}{a}$	d) $\frac{b}{a}$			

	16	rations in two variable	es is consistent, then the li	no concessed by				
9.			wen the n	ne represented by				
	the two equations are	;	b) parallel					
	 a) intersecting 		d) internati					
	 c) always coincident 		d) intersecting or con	ncident				
10.	The sum of first 20 o	dd natural numbers is						
10.	") 100	b) 210	c) 400	d) 420				
	a) 100	0) 2.		420				
			ic length actions					
11.	The height of a vertice	cal pole is va times of	ne length of its shadow on	the ground, then				
	the angle of elevation	of the sun at that tim	ic is					
	a) 30°	b) 60°	c) 45°	d) 75°				
	a) 50	-()		4,75				
	1 24 m du	wast and then 7 m d	ue north. How far is he fr					
12.		e west and then 7 m -	ar is he fr	om the starting				
	point?	10.22	-> 0 -					
	a) 31 m	b) 17 m	c) 25 m	d) 26 m				
-	•			·, 20				
13.	(sec A + tan A)(1 - sec A + tan A)	sin A) =						
15.	•	b) sin A	0) 00					
	a) sec A	D) SIII A	c) cosec A	d) cos A				
1								
14.	The line segment is of	f length 10 units. If th	ne coordinates of one end	are (2 -3) and				
	the abscissa of the oth	er end is 10, then its	ordinate is	are (2, 3) and				
		b) 3, -9						
	a) 9, 6	0) 3, -9	c) -3 , 9	d) 9, - 6				
15.	If x $\tan 45^{\circ} \cos 60^{\circ} =$	sin 60° cot 60°, then	1 X =					
		b) √3	c) $\frac{1}{2}$. 1				
	a) 1	0) V3	$\frac{c}{2}$	d) $\frac{1}{\sqrt{2}}$				
				1-				
16.	The zeros of the quad	ratic polynomial $x^2 +$	$ax + a a \neq 0$					
10.			b) connect both be					
	a) cannot both be pos		b) cannot both be					
	c) are always unequal		d) are always equa	al				
-								
17,	In an isosceles triangl	e ABC if AC= BC an	and $AB^2 = 2AC^2$, then $\angle C = 2AC^2$	<u> </u>				
-7			c) 90°					
	a) 30°	b) 45°	C) 9 0	d) 60°				
1								
18.	If the point $P(x, y)$ is	equidistant from A (5	5, 1) and B(-1, 5), then					
	a) $5x = y$	-	c) $3x = 2y$	d) $2x = 3y$				
	u) 0 k	o) K oj	0, 5.1. 23	d) LK 3				
10	10							
19.			+ by $=$ c and $lx + my = n$					
	a) has a unique solution	on	b) has no solution					
	c) has infinitely many	solutions	d) may or may not	t have a solution				
	,	0014110110	a)) or)					
20.	The first there to	Cal. A.D	1 2 1 5 - 1 5					
20.			y are $3y - 1$, $3y + 5$ and 5					
	a) - 3	b) 4	c) 5	d) 2				
		SECTI	ON_R		$(6 \times 2 = 12)$			
$\underline{SECTION-B} \qquad (6 \times 2 = 12)$								
21	If a and 0 - 4	C.1 1	2	. 0 (- 1) 0				
21.		os of the polynomial x	$x^2 - 6x + a$, find the value	or a if				
	$3\alpha + 2\beta = 20.$;					
22.	Solve the following pe	air of linear equations	in two variables by subst	itution method:				
	p	or inious equations	in the farmeres of subst					

$$3x - 5y - 4 = 0$$
 and $9x = 2y + 7$.

- Show that square of any positive integer is of the form 3m or 3m + 1 for some integer m23.
- Determine if the points (1, 5), (2, 3) and (-2, -11) are collinear. 24.
- A father is three times as old as his son. After 12 years, his age will be twice as that of
- 26. In Δ ABC, D and E are the points on the sides AB and AC respectively, such that DE || BC. If AD = x, DB = x - 2, AE = x + 2 and EC = x - 1, find the value of x.

SECTION-C

 $(8 \times 3 = 24)$

- The 8th term of an A.P. is 37 and its 12th term is 57. Find the A.P. 27.
- 28. If $A + B = 90^{\circ}$, prove that

$$\sqrt{\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}} = \tan A$$

- 29 If zeros of the polynomial $x^2 px + q$, be in the ratio 2: 3, prove that $6p^2 = 25q$.
- The angle of elevation of a jet fighter from a point A on the ground is 60°. After a flight of 15 seconds, the angle of elevation changes to 30°. If the jet is flying at a speed of 720 km/hour, find the constant height at which the jet is flying. ($\sqrt{3} = 1.732$)
- A (6,1), B(8,2) and C (9,4) are three vertices of parallelogram ABCD. If E is the mid-point of DC, find the area of Δ ADE.
- Find the largest number which divides 245 and 1029 leaving remainder 5 in each
- In the given figure, D and E trisect BC. Prove that $8 AE^2 = 3AC^2 + 5AD^2$.

Solve the following system of linear equations graphically: x - y = 1 and 2x + y = 8.

Shade the area bounded by these two lines and y-axis. Also, determine this area.

SECTION-D

 $(6 \times 4 = 24)$

- 35. State and prove Pythagoras theorem.
- 36. Prove that $5 2\sqrt{3}$ is an irrational number.
- The sum of first 4 terms of an A.P. is 40 and that of first 14 terms is 280, find the sum of its first n terms.
- 38. A man travels 370 km partly by train and partly by ear. If he covers 250 km by train and rest by ear, it takes him 4 hours. But if he travels 130 km by train and the rest by ear, he takes 18 minutes longer. Find the speed of the train and that of the ear.
- 39. Prove that $\frac{\cot A \cdot \cos A}{\cot A + \cos A} = \frac{\csc A \cdot 1}{\csc A + 1}$
- 40. If the point P (x, y) be equidistant from the points A (a+b, b-a) and B (a-b, a+b), prove that bx = ay.