Sample paper 6 Class IX Subject: Mathematics

Time : 1hr General Instructions:

M.M 40

- 1. All questions are compulsory.
- 2. The paper consists of 17 questions divided into 4 section A, B, C and D. Section A comprises of 6 questions of 1 mark each. Section B comprises of 2 questions of each 2 marks. Section C comprises of 6 questions of 3 marks each. Section D comprises of 3 questions of 4 marks each.
- 3. There is no over all choice in this question paper. Although internal choices have been provided in the same question.

Section A (6 marks)

- 1. Choose correct length of a chord which is at a distance of 4 cm from the centre of a circle of radius 5 cm.
 - (i) 3
 - (ii) 6 (iii) 8
 - (iv) 10
- 2. Product of $4\sqrt{6}$ and $3\sqrt{24}$ is
 - (a) √72
 - (b) 12√24
 - (c) √144
 - (d) 144
- 3. Points having same Abscissa and ordinate will lie in which quadrant
 - (a) 1
 - (b) 2 only
 - (c) 3 only
 - (d) 2 or 3 only

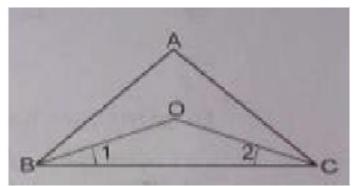
$$\frac{12}{\sqrt{(x^4)}} \frac{1}{3}$$

- 4. Evaluate and pick right answer
 - (a) x^{1/12}
 - (b) x^{1/144}
 - (c) $x^{1/9}$
 - (d) $x^{1/4}$

- 5. On which axes, do the given points lie?
 - (i) (6, 0)
 - (ii) (0,-6)
 - (a) X,Y
 - (b) 0,X
 - (c) Y,0 (d) 0,0
- 6. Simplify and choose the correct answer below

$$\frac{6^{2/3} \times \sqrt[3]{6^7}}{\sqrt[3]{6^6}}.$$
(i) 6
(ii) 6^{1/3}
(iii) 6^{2/3}
(iv) 6^{2/4}

.

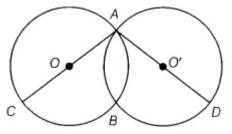

Section B (4 marks)

- 7. If x + 2k is a factor of $f(x) = x^5 4k^2x^3 + 2x + 2k + 3$ find k.
- If the area of an equilateral triangle is 16√3 cm², then find the perimeter of the triangle.

Section C (18 marks)

- 9. Simplify by rationalizing the denomiator $(4\sqrt{3} + 5\sqrt{2})/(\sqrt{48} + \sqrt{18})$.
- 10. If a = -2 and b = -1 then $a^{-b} b^{a} = ?$
- 11. Find the distance of the point P(4,3) from origin.
- 12. In fig. below, if the bisector of angles $\angle B$ and $\angle C$ of a triangle *ABC* meet at a point *O*, then prove that

 $\angle BOC = 90^{\circ} + 1/2 \angle A$



- 13. The three vertices of a rectangle ABCD are A(2, 2), B(-3,2) and C(-3,5). Plot these points on a graph paper and find the area of rectangle ABCD.
- 14. Find the value of

$$\frac{3^{40}+3^{39}+3^{38}}{3^{41}+3^{40}-3^{39}}$$

Section D (12 marks)

- 15. The cost of a ball pen is Rs 5 less than half of the cost of a fountain pen. Write this statement as a linear equation in two variables.
- 16. In In the given figure, two circles intersect at A, B and AC, AD are respectively the diameters of the circles. Prove that the points C, B and D are collinear.

17. A point O inside a rectangle ABCD is joined to the vertices. Prove that the Sum of the areas of a pair of opposite triangles so formed is equal to the sum of the areas of other pair of triangles.