CLASS IX (2019-20)

MATHEMATICS (041)

SAMPLE PAPER-02

Time: 3 Hours Maximum Marks: 80

General Instructions:

- (i) All questions are compulsory.
- (ii) The questions paper consists of 40 questions divided into four sections A, B, C and D.
- (iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
- (iv) There is no overall choice. However, an internal choices have been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is not permitted.

SECTION A

Q.1-Q.10 are multiple choice questions. Select the most appropriate answer from the given options.

Q1. Set of natural numbers is a subset of [1]

- (a) Set of even numbers
 - (b) Set of odd numbers
- (c) Set of composite numbers
- (d) Set of real numbers

Q2. Degree of the polynomial p(x) = (x+2)(x-2) is [1]

(a) 2

(b) 1

(c) 0

(d) 3

Q3. A point lies on negative side of x-axis. Its distance from origin is 10 units. The coordinates of the point are [1]

(a) (10,0)

(b) (-10,0)

(c) (0,10)

(d) (0, -10)

Q4. If (a,1) lies on the graph of 3x-2y+4=0, then a=

(a) $\frac{-2}{3}$

(b) $\frac{2}{3}$

(c) $\frac{3}{2}$

(d) $\frac{-3}{2}$

Q5. If a point C lies between two point A and B such that AC = BC, then [1]

 $A \qquad C \qquad B$

(a) AC = AB

(b) $AC = \frac{1}{2}AB$

(c) $AB = \frac{1}{2}AC$

(d) $AC = \frac{1}{3}AB$

Q6. If $l \parallel m$, then value of x is

[1]

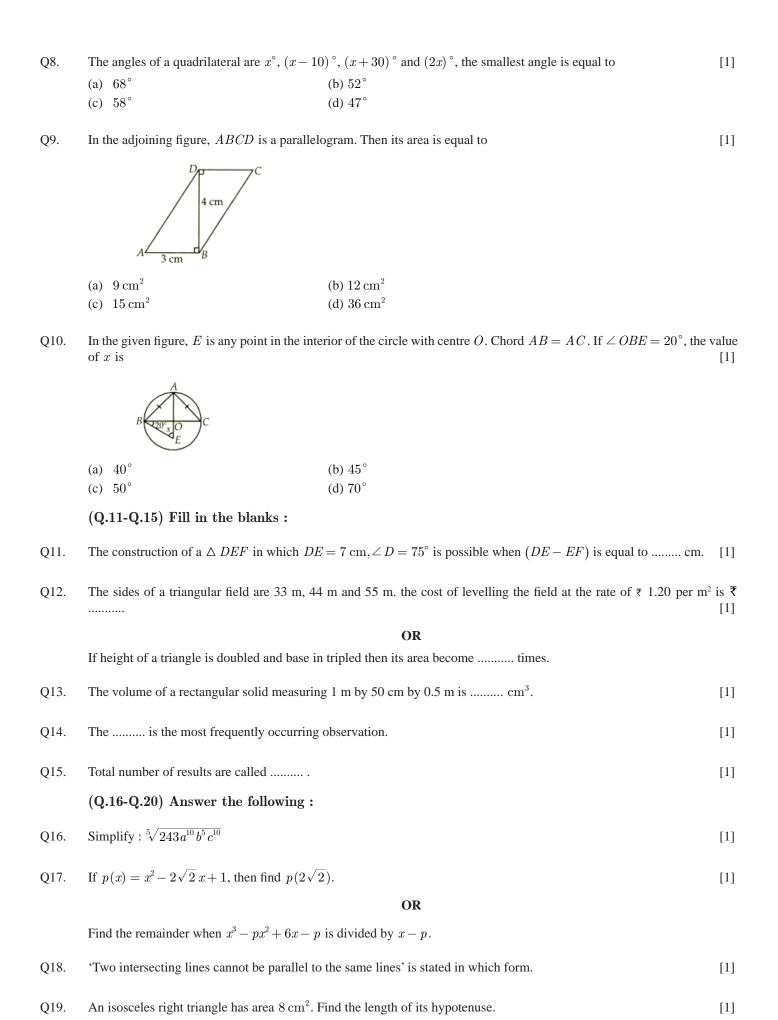
(a) 60°

(b) 120°

(c) 40°

(d) Cannot be determined

Q7. Which of the following is not a criterion for congruence of triangles?


[1]

(a) SSA

(b) SAS

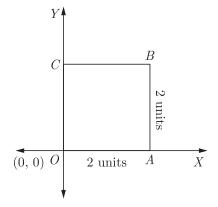
(c) ASA

(d) SSS

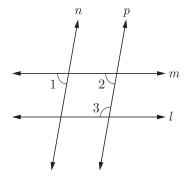
OR

The base of a right triangle is 8 cm and hypotenuse is 10 cm. What is its area?

Q20. Two coins are tossed simultaneously. List all possible outcomes.


SECTION B

- Q21. If $x = \frac{\sqrt{7} + \sqrt{6}}{\sqrt{7} \sqrt{6}}$, then find the value of $\left(x + \frac{1}{x}\right)^2$. [2]
- Q22. Find the value of k, for which the polynomial $x^3 3x^2 + 3x + k$ has 3 as its zero. [2]


OR

Give the equations of two lines passing through (2, 14). How many more such lines are there, and why?

Q23. In the figure, O is the origin and OABC is a square of side 2 units. Find the co-ordinates of A, B and C.

- Q24. One of the three angles of a triangle is twice the smallest and another is three times the smallest. Find the angles. [2]
- Q25. In the given figure, if $l \mid m, n \mid p$ and $\angle 1 = 75^{\circ}$, then find $\angle 3$.

OR

The medians BE and CF of a $\triangle ABC$ intersect at G. Prove that $ar(\triangle GBC) = ar(\text{quad } AFGE)$.

Q26. A solid right circular cone of radius 4 cm and height 7 cm is melted to form a sphere. Find the radius of sphere. [2]

OR

The sides of a triangle are in the ratio 3:5:7 and its perimeter is 300 m. Find its area.

SECTION C

- Q27. The points A(a, b) and B(b, 0) lie on the linear equation y = 8x + 3.
 - (i) Find the value of a and b
 - (ii) Is (2, 0) a solution of y = 8x + 3?
 - (iii) Find two solutions of y = 8x + 3

[3]

[2]

OR

Draw graphs of 3x + 2y = 0 and 2x - 3y = 0 and what is the point of intersection of the two lines representing the above equation.

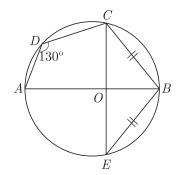
Q28. The sides of a triangular park are 8 m, 10 m and 6 m respectively. A small circular area of diameter 2 m is to be left out and the remaining area is to be used for growing roses. How much area is used for growing roses? [Take $\pi = 3.14$] [3]

OR

The area of an isosceles triangle is $8\sqrt{15}~{\rm cm}^2$. If the base is 8 cm, find the length of each of its equal sides.

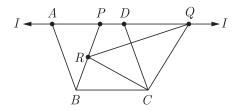
- Q29. Draw a $\triangle ABC$, in which BC = 4 cm, AB = 5 cm and the median BE = 3.5 cm. [3]
- Q30. Consider the marks, out of 100, obtained by 51 students of a class in a test, given below.

Marks	Number of students
0-10	5
10-20	10
20-30	4
30-40	6
40-50	7
50-60	3
60-70	2
70-80	2
80-90	3
90-100	9
Total	51


Draw a histogram and frequency polygon for the above data on a same scale.

OR

For a particular year, following is the frequency distribution table of ages (in years) of primary school teachers in a district :


Age (in years)	Number of teachers
15-20	10
20-25	30
25-30	50
30-35	50
35-40	30
40-45	6
45-50	4

- (i) Write the lower limit of the first class interval.
- (ii) Determine the class limits of the fourth class interval.
- (iii) Find the class mark of the class 45-50.
- Q31. In the given figure, $\angle ADC = 130^{\circ}$ and chord BC = chord BE. Find $\angle CBE$.

Q32. In the given figure, parallelogram ABCD and PBCQ are given. If R is a point on PB, then show that $ar(\Delta QRC) = \frac{1}{2}ar(||gm|ABCD)$.

[3]

- Q33. Prove that the mid point of the hypotenuse of a right angled triangle is equidistant from its vertices. [3]
- Q34. Prove that the sum of any two sides of a triangle is greater than the third side. [3]

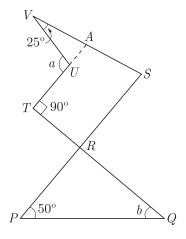
SECTION D

$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \ldots + \frac{1}{\sqrt{8}+\sqrt{9}}$$

Q36. Find the value of
$$x^3 - 8y^3 - 36xy - 220$$
, when $x = 2y + 6$. [4]

OR

Which of the following points $A\left(0,\frac{17}{3}\right)$, B(2,6), C(1,5) and D(5,1) lie on the linear equation 2(x+1)+3(y-2)=13.


Q37. Factorise:
$$4x^4 + 7x^2 - 2$$
. [4]

Q38. The sum of the height and radius of the base of a solid cylinder is 37 cm. If the total surface area of the cylinder is 1628 cm², then find its volume.

OR

Three cubes of metal whose edges are in the ratio 3:4:5 are melted down into a single cube whose diagonal is $12\sqrt{3}$ cm. Find the edges of the three cubes.

Q39. In the given figure, if $TU \mid \mid SR$ and $TR \mid \mid SV$, then find $\angle a$ and $\angle b$. [4]

Q40. The percentage of salary donated by twelve different households to an orphanage every month are: 2, 5, 3, 5, 6, 1, 2, 4, 3, 5, 2, 2.

Find the mean, median and mode of the data. [4]