

SAMPLE PAPER

CBSE - Class 10

MATHEMATICS

(STANDARD)

Time Allowed: 3 Hours

Maximum Marks: 80

General Instructions:

(A) 50^{th}

- (i) All questions are compulsory.
- (ii) The question paper consists of 40 questions divided into four sections A, B, C & D.
- (iii) Section A contains **20** questions of **1** mark each, Section B comprises of **6** questions of **2** marks each. Section C comprises of **8** questions of **3** marks each. Section D comprises **6** questions of **4** marks each.
- (iv) There is no overall choice. However internal choices have been provided in **two** questions of **1** marks each, **two** questions of **2** marks each, **three** questions of **3** marks each and **three** questions of **4** marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is **not** permitted.

(B) 51th

SECTION - A

Q 1 – 10 are multiple choice questions. Select the most appropriate answer from the

giv	en options.				
1.	The HCF of 36 ar	nd 54 is:			1
	(A) 2	(B) 6	(C) 9	(D) 18	
	Which of the followard $p(x) = x^3 - 7x + 6$	owing is not a zero o	f the polynomial		1
	(A) 1	(B) 2	(C) -2	(D) -3	
3.	The discriminant	of the quadratic equa	ation $x^2 - 4x + 1 =$	0 is:	1
	(A) 10	(B) 11	(C) 12	(D) 14	
4.	Which term of the	e AP: 4, 9, 14,	is 254?		1

(C) 52^{nd}

(D) 53^{rd}

5.	The centrola of Z	ΔABC , where $A(-4,$	0), $D(2, -2)$ and $C(2)$., 3), 18.	1				
	(A) (0, 2)	(B) $(0, 3)$	(C) (1, 3)	(D) (1, 2)					
6.	A man goes 15 m	due west and then 8	m due north. Now f	ar is he from the starting point?	1				
	(A) 15 m	(B) 8 m	(C) 17 m	(D) 16 m					
7.	$4 \tan^2 A - 4 \sec^2$	$\tan^2 A - 4 \sec^2 A$ is equal to:							
	(A) 2	(B) 3	C) 4	(D) –4					
8.	If the perimeter of	of a semi-circular pro	otractor is 36 cm, th	nen its diameter is:	1				
	(A) 12 cm	(B) 13 cm	(C) 14 cm	(D) 15 cm					
9.	A box contains 20 balls bearing number 1, 2, 3, 4,, 20. A ball is drawn at random from the box. What is the probability that the number on the ball is divisible by 7?								
	(A) $\frac{1}{10}$	(B) $\frac{2}{7}$	(C) $\frac{3}{20}$	(D) $\frac{1}{5}$					
10.	•	Itean of twenty observations is 15. If two observations 3 and 14 are replaced by 8 and 9 respectively, then the new mean will be:							
	(A) 14	(B) 15	(C) 16	(D) 17					
(Q	11 – 15) Fill in tl	ne blanks:							
11.	The quadratic equation $2x^2 + px + 3 = 0$ has two equal roots if $p = \dots$								
12.	The sum of the f	um of the first 20 natural numbers is							
13.	If $\tan \theta = \sqrt{3}$, then	$\theta = \sqrt{3}$, then $\sec \theta = \dots$.							
14.	The probability of	$\theta = \sqrt{3}$, then $\sec \theta = \dots$. probability of an impossible event is							
			OR						
	An unbissed diss	is rolled ones. The							
	An unbiased dice is rolled once. The probability of getting a prime number is								
15.				ng a prime number is	1				
		t ten multiples of 2 i		ng a prime number is					
(Q	The mean of firs	t ten multiples of 2 i	s	the median of the data.					
(Q	The mean of firs	t ten multiples of 2 i	s		1				
(Q	The mean of first 16 – 20) Answer If the mean and the	t ten multiples of 2 i the following: mode of a discrete d	s		1				
(Q 16.	The mean of first 16 – 20) Answer If the mean and the second of the	t ten multiples of 2 i the following: mode of a discrete d	s	the median of the data. Sign is 3, then find the value of p .	1				
(Q 16.	The mean of first 16 – 20) Answer If the mean and the second of $\sum f_i = 15$, $\sum f_i \times_i$ Find the probability	t ten multiples of 2 is the following: mode of a discrete d $a = 3p + 36$ and the m	or of the distributet in a single throw	the median of the data. tion is 3, then find the value of p . of a pair of dice.	1 1 1				
(Q 16. 17. 18.	The mean of first $16 - 20$) Answer If the mean and the $15 - 20$ if $\sum f_i = 15$, $\sum f_i x_i$. Find the probability Determine the $15 - 20$ if $15 - 20$ is $15 - 20$.	t ten multiples of 2 is the following: mode of a discrete d $a = 3p + 36$ and the matrix of getting double	ata is 6 and 9, find to \mathbf{OR} nean of the distribute the in a single throw the final $(x + 1)(x^2 - x - 1)$	the median of the data. tion is 3, then find the value of p . of a pair of dice.	1 1 1				

SECTION - B

Read the following question carefully and answer the questions that follow.

- 21. Two unbiased coins are tossed. Find the probability of getting: (i) two heads (ii) at least one head.
- 2
- **22.** Find the quotient and the remainder when $p(x) = x^3 4x$ is divided by $g(x) = x^2 2x$
- 2

23. Usman asked her classmate Mamta to calculate the value of

2

"sin
$$60^{\circ} \cos 30^{\circ} + \cos 60^{\circ} \sin 30^{\circ}$$
".

Mamta calculated the value as shown below:

$$\sin 60^{\circ} \cos 30^{\circ} + \cos 60^{\circ} \sin 30^{\circ} = \sin (60^{\circ} + 30^{\circ}) + \cos (60^{\circ} + 30^{\circ})$$

= $\sin 90^{\circ} + \cos 90^{\circ}$
= $1 + 0$
= 1

- i. Examine if Mamta's calculation is correct or not.
- ii. If not, point out the inaccuracy and give the correct calculation. If yes, calculate if the answer will still be "1" if angles 60° and 30° in the equation were changed to 45°.
- **24.** Find a relationship between x and y such that the point (x, y) is equidistant from the points (3, 6) and (-3, 4).

2

OR

Show that the points (4, 2), (7, 5) and (9, 7) are collinear.

- 2
- **25.** If the circumference of a circle increases from 4π to 8π , then find the percentage increase in the area of the circle.
- 2
- **26.** If 0.3528 is expressed in the form $\frac{p}{2^m 5^n}$, find the smallest values of m, n and p.
- 2

OR

Using prime factorisation, find the LCM of 150 and 210.

2

SECTION - C

Read the following question carefully and answer the questions that follow.

27. If the HCF of 657 and 963 is expressible in the form $657 \times 22 + 963y$, then find the value of y.

3

3

28. Anjali places a mirror on level ground to determine the height of a tree (see the diagram). She stands at a certain distance so that she can see the top of the tree reflected from the mirror. Ajnjali's eye level is 1.8 m above the ground. The distance of Anjali and the tree from the mirror are 1.5 m and 2.5 m respectively.

- i. Name the two similar triangles that are formed in the diagram.
- ii. State the criterion of similarity that is applicable to here.
- iii. Find the height of the tree.
- **29.** Without using tables, evaluate:

$$\sin(50^{\circ} + \theta) - \cos(40^{\circ} - \theta) + \tan 1^{\circ} \tan 10^{\circ} \tan 20^{\circ} \tan 70^{\circ} \tan 80^{\circ} \tan 89^{\circ}$$

OR

Show that:

$$\frac{\cot 30^{\circ} \cot 60^{\circ} - 1}{\cot 30^{\circ} + \cot 60^{\circ}} = \cot 90^{\circ}$$

30. In a circle of radius 7 cm, a chord makes an angle of 60° at the centre of the circle. Find: (a) area of the circle (b) area of sector AOB (c) area of minor segment APB

(Take
$$\sqrt{3} = 1.73$$
)

OR

Draw a line segment of length 8 cm. Divide it into three equal parts.

3

3

31. Solve for x and y:

$$3x + 2y = 11, \quad 2x + 3y = 4$$

OR

Determine the AP whose 3rd term is 5 and the 7th term is 9.

3

- **32.** In what ratio is the line segment joining the points (-2, -3) and (3, 7) divided by the y-axis? Also, find the coordinates of the point of division.
- 3

3

3

4

33. A solid wooden toy is in the shape of a right circular cone mounted an a hemi-sphere of radius 4.2 cm. The total height of the toy is 10.2 cm. Find the volume of the toy.

$$\left(\text{Take } \pi = \frac{22}{7}\right)$$

34. Find the mode from the following:

Age (in years)	0-10	10-20	20-30	30-40	40-50	50-60
Number of persons	6	11	21	23	14	5

SECTION - D

- 35. Construct a $\triangle ABC$ in which AB = 6.5 cm, $\angle B = 60^{\circ}$ and BC = 5.5 cm. Also, construct a triangle A' BC' similar to $\triangle ABC$, whose sides are $\frac{2}{5}$ the corresponding sides of $\triangle ABC$.
- **36.** Given the 1 is a zero of the polynomial $2x^3 + x^2 2x 1$, find all the zeros.
- **37.** State and prove the **converse** of Pythagoras Theorem.

OR

In a \triangle ABC, \angle B is an acute-angle and AD \perp BC.

4

Prove that

(i)
$$AC^2 = AB^2 + BC^2 - 2 BC \times BD$$

(ii)
$$AB^2 + CD^2 = AC^2 + BD^2$$

38. The shadow of the tower, standing on a level ground is found to be 40 m longer when the sun's altitude is 30° than what it is 60°. Find the height of the tower.

4

OR

Two pillars of equal height, stand on either side of a roadway which is 150 m wide. From a point on the roadway between the pillars, the elevations of the top of the pillars are 60° and 30°. Find the height of the pillars and the position of the point. [Use $\sqrt{3} = 1.73$]

4

39. An umbrella has 8 ribs which are equally spaced, as shown in the figure. Assuming the umbrella to be a flat circle of radius 45 cm, find the area between the two consecutive ribs of the umbrella.

4

40. Show graphically that the following system of equations has no solutions:

$$x - 2y = 6$$
; $3x - 6y = 0$

4

OR

Using the quadratic formula, solve for x:

$$3x^2 + 2\sqrt{5}x - 5 = 0$$

4