CBSE - Class 10

MATHEMATICS

(STANDARD)

Time Allowed: 3 Hours

Maximum Marks: 80

General Instructions:

- (i) All questions are compulsory.
- (ii) The question paper consists of 40 questions divided into four sections A, B, C & D.
- (iii) Section A contains 20 questions of 1 mark each, Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises 6 questions of 4 marks each.
- (iv) There is no overall choice. However internal choices have been provided in two questions of 1 marks each, two questions of 2 marks each, three questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is **not** permitted.

SECTION - A

Q 1 – 10 are multiple choice questions. Select the most appropriate answer from the given options.

- 1. The product of a non-zero rational number and an irrational number is:
- 1

(A) an integer

- (B) a rational number
- (C) an irrational number
- (D) a rational or an irrational number
- **2.** A quadratic polynomial, whose zeros are -3 and 4, is:

1

(A)
$$x^2 - x + 12$$

(B)
$$x^2 + x + 12$$

(C)
$$\frac{x^2}{2} - \frac{x}{2} - 6$$

(A)
$$x^2 - x + 12$$
 (B) $x^2 + x + 12$ (C) $\frac{x^2}{2} - \frac{x}{2} - 6$ (D) $2x^2 + 2x - 24$

3.
$$2x^2 + x + 4 = 0$$
 has:

1

- (A) two equal and real roots
- (B) two unequal and real roots

(C) no real roots

(D) more than two real roots

4.	The 11 th	term of th	he AP: $\sqrt{2}$	$\sqrt{3\sqrt{2}}$, $\sqrt{2}$, $\sqrt{2}$,	is:		1
		Γ .					

- (A) $17\sqrt{2}$
- (B) $19\sqrt{2}$
- (C) $21\sqrt{2}$
- (D) $23\sqrt{2}$

5. If the distance between the points
$$(4, p)$$
 and $(1, 0)$ is 5, then the value of p is:

- (A) 4 only
- (B) ± 4
- (C) -4 only

6. It is given that
$$\triangle ABC \sim \triangle PQR$$
 with $\frac{BC}{QR} = \frac{1}{3}$. Then $\frac{ar(\triangle PRQ)}{ar(\triangle ABC)}$ is equal to:

- (A) 9
- (B) 3

7. A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that
$$OQ = 12$$
 cm. Then, length of PQ is:

1

1

1

- (A) 12 cm
- (B) 13 cm
- (C) 8.5 cm
- (D) $\sqrt{119}$ cm

1

- (A) π
- (B) 7π
- (C) 9π
- (D) 13 π

1

- (A) 3150 cm^2
- (B) 1575 cm²
- (C) 1012.5 cm² (D) 576.4 cm²

1

(Q 11 – 15) Fill in the blanks:

11. is calculated using the formula:
$$\ell + \frac{\frac{N}{2} - f}{f} \times h$$
.

1

12. Number of rounds that a wheel of diamter $\frac{7}{11}$ metre will make in moving a distance of 2 km is

1

13. In the given figure, P divides the line segment AB in the ratio

1

1

15. The roots of
$$x + \frac{1}{x} = 2$$
 are

1

When a whole number is added to twice its square and the sum so obtained is 21, then the number is

1

(Q 16 - 20) Answer the following:

16. In the figure, DE is parallel to BC. AB = 5.6 cm and AD = 1.6 cm. Find AE : EC

1

17. State Pythagoras Theorem.

OR

1

In the figure, AB \parallel ED. Show that \triangle ABC \sim \triangle DEC

1

18. Find the ratio of the volume of a cube to that of the sphere which fits inside the cube.

1

19. If for a given data with 100 observations, the 'less than ogive' and 'more than ogive' intersect at (525, 50). Find the median of data.

1

20. Sarita buys a fish from a shop for her aquarium. The shopkeeper takes out a fish at random from a tank containing 10 male fish and 12 female fish. What is the probability that the fish taken out is a female fish?

1

SECTION - B

Read the following question carefully and answer the questions that follow.

21. Prove that the lengths of tangents drawn from an external point to a circle are equal.

2

2

OR

In the figure, PQ and RS are the common tangents to two circles intersecting at O.

Prove that:

PQ = RS

22. A large IT company assigns a job to a technician, to repair its 200 computers. The following table shows the time taken by him in repairing these computers:

2

Time (t min)	20-30	30-40	40-50	50-60	60-70	70-80
Frequency	24	56	40	35	27	18

- (i) Construct a 'less than type' ogive;
- (ii) How many computers took more than 55 minutes?

- 23. Three consecutive vertices of a parallelogram are (-2, 1), (1, 0) and (4, 3). Find the coordinates of the fourth vertex.
- **24.** Find the quotient and the remainder, when:

$$p(x) = 2x^2 + 3x + 1$$
 is divided by $g(x) = x + 2$

ΩR

If one root of equation $px^2 - 14x + 8 = 0$ is six times the other root, then find the value of p.

2

25. In \triangle ABC, \angle A is acute. BD and CE are perpendiculars on AC and AB respectively. Prove that AB \times AE = AC \times AD

2 2

26. Assuming that $\sqrt{2}$ is irrational, show that $5\sqrt{2}$ is an irrational number.

SECTION - C

Read the following question carefully and answer the questions that follow.

27. Find the volume of the largest right circular cone that can be cut out of a cube whose edge is 7 cm.

3

OR

The perimeters of the ends of the frustum of a cone are 44 cm and 22 cm. If the height of the frustum be 21 cm, find its radii, slant height, and the volume.

3

28. From the top of a building 60 m high, the angle of depression of the top and bottom of a vertical lamp-post are observed to be 30° and 60° respectively. Find the height of the lamp-post, and the distance between the top of building and the top of lamp-post.

3

29. In the figure, OACB is a quadrant of a circle with centre O and radius 3.5 cm. If OD = 2 cm, find the area of the (i) quadrant OACB (ii) Shaded region

3

30. If $x = a \cos^3 \theta$ and $y = b \sin^3 \theta$, then prove that:

3

$$\left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{b}\right)^{\frac{2}{3}} = 1$$

31. ` 250 were divided equally among a certain number of children. If there were 25 more children, each would have received 50 paise less. Find the number of children.

3

32. Find the greatest number that divides 2623 and 2011 and leaves remainders of 5 and 9 respectively.

3

OR

Prove that $n^2 - n$ is divisible by 2 for every positive integer n.

3

33. A Residential Welfare Association (RWA) of a colony plans to install two slides for the children to play in a park. The slides along with the stairs to reach the top of the slide make 2 triangles. For the children below the age of 5 years, it prefers to have a slide whose top is at a height of 1.5 m and is inclined at an angle of 30° to the ground, whereas for elder children, it wants to have a steep slide at a height of 3 m and inclined at angle of 60° to the ground.

3

1

3

3

4

4

4

Find:

(i) The length of the slide for the younger children;

30°

(ii) The base length of triangle formed by the elder children slide;

1.5 m

- (iii) Using pythagoras theorem only, calculate the length of the slide for elder children;
- **34.** Solve for x and y:

 $x + \frac{y}{4} = 11$; $\frac{5x}{6} - \frac{y}{3} = 17$

OF

A 2-digit number is such that the product of the digits is 20. If 9 is subtracted from the number, the digits interchange their places. Find the number.

SECTION - D

35. If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio. Prove it.

OR

BL and CM are medians of ΔABC , right-angled at A. Prove that:

 $4(BL^2 + CM^2) = 5 BC^2$

36. Using quadratic formula, solve for x:

 $\sqrt{3}x^2 + 11x + 6\sqrt{3} = 0$

37. Obtain all other zeros of $p(x) = 3x^4 + 6x^3 - 2x^2 - 10x - 5$, if two of its zeros are

$$\sqrt{\frac{5}{3}} \text{ and } -\sqrt{\frac{5}{3}}$$

4

4

4

4

OR

How many terms of the AP: 24, 20, 16, must be taken so that the sum may be 72? Explain the double answer.

- **38.** A number *x* is selected from the numbers 1, 2, 3 and then a second number *y* is selected randomly from the numbers 1, 4, 9. What is the probability that the product *xy* of the two numbers will be less than 9?
- **39.** Construct a $\triangle PQR$ with QR = 6 cm, PQ = 4 cm and $\angle PQR = 60^{\circ}$. Construct another $\triangle P'QR'$ similar to $\triangle PQR$ with side $QR' = \frac{4}{3}$ of QR.
- 40. Draw "less than type" ogive for the following frequency distribution:

Marks	0-20	20-40	40-60	60-80	80-100
Number of Students	7	12	23	18	10

Also, find the median from the ogive.

OR

Find the mean and mode for the following frequency distribution:

Monthly consumption (in units)	65-85	85-105	105-125	125-145	145-165	165-185	185-205
Number of consumers	4	5	13	20	14	8	4