

SAMPLE PAPER

8

1

CBSE - Class 10

MATHEMATICS

(STANDARD)

Time Allowed: 3 Hours

Maximum Marks: 80

General Instructions:

- (i) All questions are compulsory.
- (ii) The question paper consists of 40 questions divided into four sections A, B, C & D.
- (iii) Section A contains **20** questions of **1** mark each, Section B comprises of **6** questions of **2** marks each. Section C comprises of **8** questions of **3** marks each. Section D comprises **6** questions of **4** marks each.
- (iv) There is no overall choice. However internal choices have been provided in **two** questions of **1** marks each, **two** questions of **2** marks each, **three** questions of **3** marks each and **three** questions of **4** marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is **not** permitted.

SECTION - A

Q 1 – 10 are multiple choice questions. Select the most appropriate answer from the given options.

1. If $\triangle ABC$ is right-angled at C, then the value of cos (A + B) is:

- (A) 1 (B) 0 (C) $\frac{1}{2}$ (D) $\frac{\sqrt{3}}{2}$ 2. If $\csc \theta \cot \theta = \frac{1}{3}$, then the value of $\csc \theta + \cot \theta$ is:

 (A) 1 (B) 2 (C) 3 (D) 4
- 3. A wire is in the shape of a circle of radius 21 cm. It is bent to form a square. The side of the square is: $\left(\pi = \frac{22}{7}\right)$ (A) 22 cm
 (B) 33 cm
 (C) 44 cm
 (D) 66 cm

4.	The area of a circ	e area of a circle that can be inscribed in a square of side 6 cm is:						
	(A) $36 \pi \text{ sq cm}$	(B) $18 \pi \text{ sq cm}$	(C) $12 \pi \text{ sq cm}$	(D) 9 π sq cm				
5.	Two coins tossed	together. The prob	ability of getting he	ad on both is:	1			
	(A) 0	(B) $\frac{1}{4}$	(C) $\frac{1}{2}$	(D) $\frac{3}{4}$				
6.	Which of the foll	owing is a non-tern	ninating repeating d	ecimal?	1			
	(a) $\frac{35}{14}$	(b) $\frac{14}{35}$	(c) $\frac{1}{7}$	(d) $\frac{7}{8}$				
7.	If $x = 2^2 \times 3^3 \times 3^3$	7^2 , $y = 2^3 \times 3^2 \times 5$	\times 7, then HCF (x ,)	y) is:	1			
	(A) 252	(B) 1260	(C) 8820	(D) 52920				
8.	If α , β are the ze	ros of the polynom	al $5x^2 - 7x + 2$, the	en the sum of their reciprocal is:	1			
	(A) $\frac{7}{2}$	(B) $\frac{7}{5}$	(C) $\frac{2}{5}$	(D) $\frac{14}{25}$				
9.	If the lines by $3x$	x + 2py = 2 and $2x - 2$	+ 5y + 1 = 0 are part	rallel, then the value of p is:	1			
	(A) $-\frac{5}{4}$	(B) $\frac{2}{5}$	(C) $\frac{15}{4}$	(D) —				
10.	The distance bety	ween the points (0,			1			
	(A) 5	(B) $5\sqrt{2}$	(C) $2\sqrt{5}$	(D) 10				
(Q	11 – 15) Fill in th	ne blanks:						
11.	10 th term from en	nd of AP: 4, 9, 14,	·· 254 is		1			
12.	Secant intersects	a circle at	distinct points.		1			
13.	If D and E are po	oints of trisection o	f sides AB and AC of	of \triangle ABC, then DE =	1			
14.	• Volume of a frustum of a cone is given by							
OR								
	If height of a right circular cylinder is doubled and radius is tripled, then its curved surface area will become times.							
15.	The probability of	f getting a number v	vhich is neither prin	ne nor composite in single throw				
	of a dice is:				1			
	16 – 20) Answer	_	_					
16.		e roots of the equati	on $x^2 - 1 = 0$, then		1			
	show that: $\alpha + \beta$	$=\frac{1}{\alpha}+\frac{1}{\beta}$						
17.	Find the solution	of $x + y = 3$ and 7.	x + 6y = 2.	\triangle^{A}	1			
18.	In the figure, if \(\alpha \)	$\angle A = \angle B$ and $AD = AD$	= BE.	D	1			
	Show that DE A	AB in ΔABC.						
				B * E C_				

Determine the distance between two parallel tangents to a circle of radius r.

19. In the figure, $\angle APB = 90^{\circ}$ Find the length of OP.

20. Find the mean of first eleven natural numbers.

1

1

SECTION - B

21. Given that \sqrt{p} is an irrational number, where p is a prime number, prove that $(\sqrt{3} + \sqrt{5})$ is irrational.

2

22. Form a quadratic polynomial, whose zeros are -3 and 5.

2

OR

Find the roots of $6x^2 - \sqrt{2}x - 2 = 0$

2

23. The diagonals of a rhombus are 15 cm and 36 cm long. Find the side length of the rhombus.

2

OR

A plot is in the form of a rectangle ABCD having a semi-circle on BC as shown in the figure. The semi-circular portion is grassy while the remaining plot is without grass. Find the area of the plot without grass.

2

24. In the diagram, OABC is a rhombus, where O is the origin. The coordinates of

A and C are (a, 0) and (s, t) respectively.

2

2

- (i) Write down the coordinates of B in terms of a, s and t.
- (ii) Find the length of OC in terms of s and t.
- 25. Without actually performing the long division, write the decimal expansion of $\frac{13}{3125}$.

3

3

3

3

3

SECTION - C

- **27.** Which term of the AP: -2, -7, -12,, will be -77? Find the sum of this AP up to the term -77.
- **28.** If one of the zeros of the cubic polynomial $x^3 + ax^2 + bx + i$ is -1, then find the product of the other two zeros.

OR

Determine the number of real roots of the equation:

$$(x^2 + 1)^2 - x^2 = 0$$

29. Find the area of the shaded region in the figure, if ABCD is a square of side 14 cm and APD and BPC are semi-circles.

- **30.** A carpenter cuts a wooden cone into three parts A, B and C by two planes parallel to the base as shown in the diagram. The heights of the three parts are equal.
 - (i) Find the ratio of the volumes of parts A, B and C
 - (ii) Find the ratio of the base areas of parts A, B and C
 - (iii) If the volume of the original cone is 540 cu cm, find the volume of part B

31. Show that, points (a, b + c), (b, c + a) and (c, a + b) are collinear.

The two opposite vertices of a square are (-1, 2) and (3, 2). Find the coordinates of the other two vertices.

3

3

3

4

3

32. Determine the value of

$$\csc (75^{\circ} + \theta) - \sec (15^{\circ} - \theta) - \tan (55^{\circ} + \theta) + \cot (35^{\circ} - \theta)$$

OR

Prove that:

$$\frac{\tan A}{1 + \sec A} - \frac{\tan A}{1 - \sec A} = 2 \csc A$$

- **33.** ABC is an isoscles triangle with AB = AC = 13 cm. The length of altitude from A on BC is 5 cm. Find the length of BC
- **34.** If $\sin \theta = \frac{12}{13}$, find the value of:

$$\frac{\sin^2\theta - \cos^2\theta}{2\sin\theta\cos\theta} - \frac{1}{\tan^2\theta}$$

SECTION - D

- **35.** Two dice are thrown together. Find the probability that the product of the numbers on the top of the dice is: (i) 6 (ii) 12 (iii) 7
- **36.** How many terms of the AP: 9, 17, 25, must be taken to give a sum of 636?
- 37. From the top of a tower 'h' metres high, angle of depression of two objects which are in line with foot of the tower are α and β ($\beta > \alpha$). Find the distance between the two objects. 4
- 38. 5 books and 7 pens together cost `79, whereas 7 books and 5 pens together cost `77, find the total cost of 1 book and 2 pens.

OR

Divide: $p(x) = x^4 - 5x + 6$ by $g(x) = 2 - x^2$; and find the quotient and the remainder.

4

4

4

- **39.** Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that:
 - (i) TP = TQ
 - (ii) $\angle PTQ = 2\angle OPQ$

OR

State and Prove Pythagoras Theorem.

40. The following table gives production yield per hectare of wheat of 100 farms of a village:

Production yields (in kg/ha)	50-55	55-60	60-65	65-70	70-75	75-80
Number of farms	2	8	12	24	38	16

Change the distribution to a "more than type" distribution and draw its ogive.

OR

For the following distribution, find the median.

Class	40-45	45-50	50-55	55-60	60-65	65-70	70-75
Frequency	2	3	8	6	6	3	2

4

4