

1

CBSF - Class 10

MATHEMATICS

(STANDARD)

Time Allowed: 3 Hours Maximum Marks: 80

General Instructions:

(A) 26

- (i) All questions are compulsory.
- (ii) The question paper consists of 40 questions divided into four sections A, B, C & D.
- (iii) Section A contains 20 questions of 1 mark each, Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises 6 questions of 4 marks each.
- (iv) There is no overall choice. However internal choices have been provided in two questions of 1 marks each, two questions of 2 marks each, three questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is **not** permitted.

(B) 27

SECTION - A

Q 1 – 10 are multiple choice questions. Select the most appropriate answer from the given options.

_	=				
1.	The zeros of the quadratic polynomia	al $x^2 + 99x + 127$ are:	1		
	(A) both equal	(B) both negative			
	(C) both positive	(D) one positive and one negative			
2.	If the lines given by $3x + 2\lambda y = 2$ and	d $2x + 5y + 1 = 0$ are parallel, then the value of λ is:	1		
	(A) $\frac{-5}{4}$ (B) $\frac{2}{5}$	(C) $\frac{15}{4}$ (D) $\frac{3}{2}$			
3.	Which term of the AP: 1, 4, 7, is	88?	1		

(C) 30 **4.** If the points A(1, 2), O(0, 0) and C(a, b) are collinear, then:

(D) 35

(A)
$$a = b$$
 (B) $a = 2b$ (C) $2a = b$ (D) $a = -b$

5.	A line which is perpendicular to the radius of the circle through the point of contact, is called a:							
	(A) tangent (B) cl	nord	(C) normal	(D)	segment			
6.	If the perimeter and the area of a circle are numerically equal, then the radius of the circle is:							
	(A) 2 units (B) π	units	(C) 4 units	(D)	7 units			
7.	The perimeter of a semi-	-circular disc	of radius 3.5	cm is:				
	(A) 18 cm (B) 18	3 sq cm	(C) 11 cm	(D)	11 sq cn	^		
8.	The curved surface area of a right circular cone shown in the figure is:							
	(A) $\pi r(h+r)$ sq units		(B) $\pi r l$ sq units					
	(C) $\frac{1}{3}\pi r^2 h$ sq units		(D) $\frac{1}{3}\pi r^2 l$ sq units					
9.	Four cubes each of side 2 cm are joined end to end. The total surface area of the cuboid so formed is:							
	(A) 72 sq cm (B) 32	2 sq cm	(C) 36 sq c	m (D)	54 sq cm			
	the following is not correct? (A) Number is even. (B) Number is odd. (C) Number is greater than or equal to 12. (D) Number is greater then 12. 2 11 – 15) Fill in the blanks: If one of the three equal zeros of the polynomial $p(x) = x^3 - d$ is 2, then the value of d is							
			OR					
	If $\frac{a_1}{a_2}$ $\frac{b_1}{b_2}$, then th has a unique solution.	e system of e	quations $a_1 x$	$+ b_1 y + c_1 =$	0 and $a_2x +$	$b_2 y + c_2 = 0$		
12.	Median class of the following data is							
	Marks	0-20	20-40	40-60	60-80	80–100		
	Number of students	5	15	30	8	2		
13.	Discriminant of $4\sqrt{3}x^2$	$+5x - 2\sqrt{3} =$	0 is					
14.	$\sin 2A = 2 \sin A$ is true when $A = \dots$							
15.	In "less than" type ogive, the cumulative frencies are plotted against of the concerned classes.							
(Q	16 - 20) Answer the fol	lowing:						
	Find the value of k for v		dratic equatio	on:				
		+8 = 0 has	•					

17. Find the number of terms in the finite AP: 4, 12, 20, ···· 100.

Find the zeros of the polynomial $p(x) = 100x^2 - 81$.

- 18. If $\sqrt{3} \tan \theta = 3 \sin \theta$, then find the value of $\sin^2 \theta \cos^2 \theta$. 1
- 19. Determine the mode of the given data:

Class	0-20 20-40		40-60	60-80
Frequency	15	6	18	10

20. In a leap year, find the probability that there are 53 Sundays in the year.

1

1

1

1

SECTION - B

21. Using Euclid's Division Algorithm, find the HCF of 525 and 3000.

2

OR

Write whether every positive integer can be of the form 4q + 2, where q is an integer. Justify your answer.

2

22. The decimal expansion of the rational number $\frac{359}{2 \times 5^4}$, will terminate after how many places of decimal?

2 2

23. Prove that $5-2\sqrt{3}$ is an irrational number, assuming that $\sqrt{3}$ is irrational.

24. A copper wire when bent in the form of a square encloses an area of 121 sq cm. If the same wire is bent into the form of a circle, find the area of the circle. (Use $\pi = \frac{22}{7}$)

2

25. Given that $\triangle PQR$ is similar to $\triangle BAR$, find the value of x and y.

2

26. A bag contains 24 balls of which x are red, 2x are white and 3x are blue. A ball is drawn at random. Find the probability that the drawn ball is white.

2

26. Amrish wakes up in the morning and notices that his digital clock reads 07: 25 am.

After noon, he looks at the clock again.

What is the probability that:

2

the number in column A is a 4?

B

the number in column B is an 8?

SECTION - C

27. Find the roots of $\frac{1}{x} - \frac{1}{x-2} = 3$ ($x \ne 0, 2$)

3

28. Find a natural number whose square diminished by 84 is equal to thrice of 8 more than the given number.

3

29. Check if $g(x) = x^2 - 2$ is a factor of $p(x) = x^3 - 3x^2 + 5x - 3$.

3

If the zeros of the polynomial $p(x) = x^3 - 3x^2 + x + 1$ are a - b, a, a + d, then find the values of a and b.

30. If 5 cos A – 12 sin A = 0, then find the value of: $\frac{\sin A + \cos A}{2\cos A - \sin A}$

3 3

If $A = 30^{\circ}$, verify that $\sin 3A = 3 \sin A - 4 \sin^3 A$.

3

3

31. In the given figure, ℓ and m are parallel lines and line segments AB, CD and EF are concurrent at point P.

D

Prove that : $\frac{AE}{BF} = \frac{AC}{BD} = \frac{CE}{FD}$.

32. Draw a triangle ABC in which BC = 6 cm, CA = 5 cm and AB = 4 cm. Construct a triangle similar to $\triangle ABC$ and of scale factor $\frac{5}{3}$.

3

33. Find the third vertex of a triangle if its two vertices are (-1, 4) and (5, 2) and mid-point of one side is (0, 3).

3

OR

For the $\triangle ABC$ where vertices A(4, -6), B(3, -2) and C(5, 2), verify that a median of $\triangle ABC$ divides it into two triangles of equal areas.

3

34. The figure shows a wax candle in the shape of right circular cone with base radius 5 cm and height 12 cm. It takes 1 hour 40 minutes to burn completely.

3

After $12\frac{1}{2}$ minutes of burning, the candle is reduced to a frustum with a height of h cm.

Find:

- the volume of the candle, before burning;
- the total surface area of the candle, before burning;
- The value of b. 111.

SECTION - D

35. Find whether the following pair of linear equations has a unique solution. If yes, find the solution 7x - 4y = 49 and 5x - 6y = 57.

4

OR

A train takes 2 hours less for a journey of 300 km, if its speed is increased by 5 km/h from its usual speed. Find the usual speed of the train.

4

36. A kite is flying at a height of 60 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.

4

37. A hemispherical tank, of diameter 3 m, is full of water. If is being emptied by a pipe at the rate of $3\frac{4}{7}$ litres/sec. How much time will it take to make the tank half empty. [Use $\pi = \frac{22}{7}$]

4

38. Prove that, if a line is drawn parallel to one side of a triangle to intersect the other two sides at distinct points, the other two sides are divided in the same ratio. State the converse of this theorem.

4

OR

Prove that, the ratio of areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

4

39. Calculate the missing frequencies f_1 and f_2 from the following data, if the mean daily expenditure of 100 families is $\overline{\lt}$ 188.

4

Expenditure (in ₹)	140–160	160–180	180-200	200–220	220–240
Number of families	5	25	f_1	f_2	5

OR

Also, determine the modal daily expenditure of families.

40. The perpendicular from A on side BC of a \triangle ABC intersects BC at D such that BD = 3DC.

4

4

Prove that:

$$2AB^2 = 2AC^2 + BC^2.$$

В

D C

A circle is touching the side BC of ΔABC at P and touching AB and AC produced at Q and R respectively.

Prove that:

$$AQ = \frac{1}{2}$$
 (Perimeter of $\triangle ABC$)

