CBSE Class 10 Mathematics Standard

Sample Paper - 02 (2020-21)

Solution

Part-A

1. $\operatorname{HCF}(45,105)=15$
$\therefore \mathrm{LCM}=\frac{45 \times 105}{15}=315$
OR
since we know that 7 , is a prime number
as it has only 2 , factors i,e 1 and itself
also, we know that the square root of every prime number is an irrational number.
therefore $\sqrt{7}$ is an irrational number.
2. $4 x^{2}-12 x+9=0$

Here $a=4, b=-12, c=9$
$D=(-12)^{2}-4 \times 4 \times 9=144-144=0$
\therefore Equation has real and equal roots.
3. Given system of equations is, $3 x-y-5=0$ and $6 x-2 y+k=0$

Here $a_{1}=3, b_{1}=-1, c_{1}=-5$ and $a_{2}=6, b_{2}=-2, c_{2}=k$
For no solution $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\Longrightarrow \frac{3}{6}=\frac{1}{2} \neq \frac{-5}{k}$
$\Rightarrow \frac{1}{2} \neq \frac{-5}{k}$
$\Longrightarrow k \neq-10$
4. $\mathbf{3}$ common tangents can be drawn when circles touch externally as shown in the figure.

5. $\mathrm{a}=-1, d=\frac{1}{2}$

First term $=\mathbf{a}=-1$
Second term $=-1+d=-1+\frac{1}{2}=-\frac{1}{2}$
Third term $=-\frac{1}{2}+d=-\frac{1}{2}+\frac{1}{2}=0$
Fourth term $=0+d=0+\frac{1}{2}=\frac{1}{2}$
Hence, the first four terms of the given AP are $-1,-\frac{1}{2}, 0, \frac{1}{2}$.
OR
A.P. is $17,14,11, \ldots,-40$

We have,
$1=$ Last term $=-40, a=17$ and, $d=$ Common difference= $14-17=-3$
$\therefore 6$ th term from the end $=1-(n-1) d$
$=1-(6-1) \mathrm{d}$
$=-40-5 \times(-3)$
$=-40+15$
$=-25$
So, 6th term of given A.P. is $\mathbf{- 2 5}$.
6. $0.6,1.7,2.8,3.9 .$.

First term $=a=0.6$
Common difference (d) = Second term - First term
= Third term - Second term and so on
Therefore, Common difference $(\mathrm{d})=1.7-0.6=1.1$
7. $4 x^{2}+5 x=0$
$\Rightarrow x(4 x+5)=0$
$\Rightarrow x=0$ or $4 x+5=0$
$\Rightarrow x=0$ or $x=-\frac{5}{4}$
OR
In quadratic equation $a x^{2}+b x+c=0$, if $a+c=b$, then roots are -1 and $\frac{-c}{a}$.
Here $p^{2}-q^{2}+r^{2}-p^{2}=-\left(q^{2}-r^{2}\right)$
\therefore roots are -1 and $\frac{-\left(r^{2}-p^{2}\right)}{p^{2}-q^{2}}$.
8. Let $P Q$ touch the circle at point R.

We know that tangents drawn from a external point to a circle are equal in length.
$\therefore \mathrm{AB}=\mathrm{AC}=5 \mathrm{~cm}$
$\Rightarrow A P+B P=A Q+Q C=5 \mathrm{~cm}$
$\Rightarrow A P+P R=A Q+Q R=5 \mathrm{~cm} \ldots$ (i) $[\because B P=P R$ and $Q C=Q R]$
Now,Perimeter of $\triangle A P Q=$ Addition of all three sides $=A P+P Q+A Q$
$=A P+R P+Q R+A Q[\because$ from $(i)]$
$=5+5$
$=10 \mathrm{~cm}$
The perimeter of $\triangle A P Q$ is 10 cm .
9. Since Tangent touches A circle on a distinct point. On the diameter of a circle, only two parallel tangents can be drawn.

OR

$A F=A E=7 \mathrm{~cm}$ (tangents from same external point are equal)
$\therefore B F=A B-A F=13-7=6 \mathrm{~cm}$
$B D=B F=6 \mathrm{~cm}$ (tangents from same external point)
$\therefore C D=B C-B D=14-6=8 \mathrm{~cm}$
$C E=C D=8 \mathrm{~cm}$
$\therefore A C=A E+E C$
$=7+8=15 \mathrm{~cm}$.
10. We have,
$\triangle \mathrm{POS} \sim \triangle \mathrm{ROQ}$
$\Rightarrow \angle 3=\angle 4$ and $\angle 1=\angle 2$
Thus, PS and QR are two lines and the transversal PR cuts them in such a way that $\angle 3=$ $\angle 4$ i.e., alternate angles are equal. Hence, $P S \| Q R$.
11. Sequence is $4,9,14,19$,

Clearly, the given sequence is an A.P. with first term $a=4$ and common difference $d=5$ Let 124 be the nth term of the given sequence.
Then, $\mathrm{a}_{\mathrm{n}}=124$
$\Rightarrow \mathrm{a}+(\mathrm{n}-1) \mathrm{d}=124$
$\Rightarrow 4+(n-1) \times 5=124$
$\Rightarrow 4+5 n-5=124$
$\Rightarrow 5 n-1=124$
$\Rightarrow 5 n=124+1$
$\Rightarrow 5 n=125$
$\Rightarrow n=125 / 5$
$\Rightarrow \mathrm{n}=25$
Hence, 25th term of the given sequence $4,9,14,19, \ldots .$. is 124 .
12. We have,

LHS $=\frac{\sin ^{3} \theta+\cos ^{3} \theta}{\sin \theta+\cos \theta}+\sin \theta \cos \theta$
\Rightarrow LHS $=\frac{(\sin \theta+\cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta-\sin \theta \cos \theta\right)}{\sin \theta+\cos \theta}+\sin \theta \cos \theta$
\Rightarrow LHS $=1-\sin \theta \cos \theta+\sin \theta \cos \theta=1=$ RHS
13. Given $\frac{\cot A+1}{\cot A}=1$
squaring both sides we get
$\cot ^{2} A+\left(\frac{1}{\cot A}\right)^{2}+2=1$
$\cot ^{2} A+\frac{1}{\cot ^{2} A}=1-2=-1$
14. Number of spheres $=\frac{\text { Volume of the cone }}{\text { Volume of each sphere }}$
$=\frac{\frac{1}{3} \pi^{2} h}{\frac{4}{3} \pi R^{3}}$
$=\frac{(12)^{2}(24)}{4 \times(2)^{3}}$
$=108$
15. First-term $=\mathbf{a}$
the common difference, $d=3 a-a=2 a$
Sum of n terms, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Putting the values
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 a+(n-1)(2 a)]$
$S_{n}=\frac{n}{2}[2 a+2 a n-2 a]$
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 a n]=(n)(a n)$
$\mathrm{S}_{\mathrm{n}}=a \boldsymbol{n}^{2}$
So, the sum of \boldsymbol{n} terms is $\mathbf{a n}^{\mathbf{2}}$.
16. Total number of all possible outcomes $=52$

There are 26 red cards (including 2 queens) and apart from these, there are 2 more queens.

Number of cards, each one of which is either a red card or a queen $=26+2=28$
Let E be the event that the card drawn is neither a red card nor a queen.
Then, the number of favorable outcomes $\mathbf{= (5 2 - 2 8)} \mathbf{= 2 4}$
Therefore, $P($ getting neither a red card nor a queen $)=P(E)=\frac{24}{52}=\frac{6}{13}$
17. i. (b) $\mathrm{A}(1,7), \mathrm{B}(4,2), \mathrm{C}(-4,4)$

Distance travelled by Seema, $A C=\sqrt{[-4-1]^{2}+[4-7]^{2}}=\sqrt{34}$ units Distance travelled by Aditya, $\mathrm{BC}=\sqrt{[-4-4]^{2}+[4-2]^{2}}=\sqrt{68}$ units \therefore Aditya travels more distance
ii. (d) By using mid-point formula,

Coordinates of D are $\left(\frac{1+4}{2}, \frac{7+2}{2}\right)=\left(\frac{5}{2}, \frac{9}{2}\right)$
iii. $\operatorname{ar}(\Delta \mathrm{ABC})=\frac{1}{2}[1(2-4)+4(4-7)-4(7-2)]$
$=17$ sq. units
iv. (b) $(-4,4)$
v. (d) $(4,2)$
18. i. (c) 25 m
ii. (a) 40 m
iii. (c) 25 m
iv. (d) $150 \mathrm{~m}^{2}$
v. (a) 60 m
19. i. (a) Curve A - Less than type ogive and Curve B - More than type ogive
ii. (c) Median Wages $=50$ Rs.
iii. (d) Mode $=3$ Median -2 Mean $=3(50)-2(50)=50$ Rs.

As, Mean $=$ Median $=$ Mode, so it is a symmetrical distribution
iv. (a) Median
v. (b) Median
20. i. (a) 6 cm
ii. (c) $904.32 \mathrm{~cm}^{3}$
iii. (c) $1: 1$
iv. (d) $527.52 \mathrm{~cm}^{2}$
v. (c) Remain unaltered

Part-B

21. Let $x=0 . \overline{2341}=0.2341341 \quad 341 \ldots$ (1)

Multiplying both sides of (1) by 10 , we get
10x =2. 341341341
Multiplying both sides of (2) by 1000, we get
10000x = 2341. 34134131
Subtracting (2) from (3), we get
$9990 x=2339 \Rightarrow x=\frac{2339}{9990}$
Here, $p=2339, q=9990$
22. Let $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ be the vertices of a given triangle as shown in the figure.

Now, $(3,4)$ is the mid-point of $A B$, therefore,
$3=\frac{x_{1}+x_{2}}{2}$ and $4=\frac{y_{1}+y_{2}}{2}$
$x_{1}+x_{2}=6$ and $y_{1}+y_{2}=8$
$(2,0)$ is the mid-point of $B C$, then,
$2=\frac{x_{2}+x_{3}}{2}$ and $0=\frac{y_{2}+y_{3}}{2}$
$x_{2}+x_{3}=4$ and $y_{2}+y_{3}=0$
$(4,1)$ is the mid-point of $A C$, then,
$4=\frac{x_{1}+x_{3}}{2}$ and $1=\frac{y_{1}+y_{3}}{2}$
$x_{1}+x_{3}=8$ and $y_{1}+y_{3}=2$
Subtracting (ii) from (iii), we get,
$x_{1}-x_{2}=4$ and $y_{1}-y_{2}=2$ \qquad (iv)

Adding (i) and (iv), we get,
$2 x_{1}=10$ and $2 y_{1}=10$
$\mathrm{x}_{1}=5$ and $\mathrm{y}_{1}=5$
From (i), we have,
$\mathrm{x}_{2}=6-5=1$ and $\mathrm{y}_{2}=8-5=3$
From (ii), we have,
$x_{3}=4-1=3$ and $y_{3}=0-y_{2}=0-3=-3$
Thus (5,5), $(1,3)$ and $(3,-3)$ are the vertices of triangle.

OR

Area of triangle
$=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
or, $24=\frac{1}{2}[1(2 k+5)-4(-5+1)-k(-1-2 k)]$
or, $48=2 k+5+16+k+2 k^{2}$
or, $2 \mathrm{k}^{2}+3 \mathrm{k}-27=0$
or, $(k-3)(2 k+9)=0$
or, $k=3, k=-\frac{9}{2}$
23. The zeros of the said cubic polynomial are $\frac{1}{2}, 1$ and -3

Let $\alpha=\frac{1}{2}, \beta=1$ and $\gamma=-3$
Now,
$\alpha+\beta+\gamma=\frac{1}{2}+1-3=\frac{1+2-6}{2}=\frac{-3}{2}$
$\alpha \beta+\beta \gamma+\gamma \alpha=\frac{1}{2}(1)+(1)(-3)+(-3)\left(\frac{1}{2}\right)=\frac{1}{2}-3-\frac{3}{2}=\frac{1-6-3}{2}=\frac{-8}{2}=$
$\alpha \beta \gamma=\frac{1}{2}(1)(-3)=-\frac{3}{2}$
Now, a cubic polynomial whose zeros are α, β and γ is given by

$$
\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-(\alpha+\beta+\gamma) x^{2}+(\alpha \beta+\beta \gamma+\gamma \alpha) x-\alpha \beta \gamma
$$

Hence
$p(x)=x^{3}-\frac{-3}{2} x^{2}+(-4) x+\frac{3}{2}$
or $p(x)=2 x^{3}+3 x^{2}-8 x+3$
24.

Steps of construction:
i. Take a point 0 in the plane of a paper and draw a circle of the radius 4 cm .
ii. Make a point P at a distance of 7 cm from the centre 0 and Join $O P$.
iii. Bisect the line segment $O P$. Let M be the mid-point of $O P$.
iv. Taking M as a centre and $O M$ as radius draw a circle to intersect the given circle at the points, T and T^{\prime}.
v. Join PT and PT', then PT and PT are required tangents.

$$
\mathrm{PT}=\mathrm{PT}=5.75 \mathrm{~cm}
$$

25. LHS-

$$
\begin{aligned}
& \frac{\tan A}{1-\cot A}+\frac{\cot A}{1-\tan A} \\
& =\frac{\tan A}{1-\frac{1}{\tan A}}+\frac{1}{1-\tan A} \\
& =\frac{\tan ^{\tan A-1}}{\frac{\tan A-1}{\tan A}}+\frac{1}{\tan A(1-\tan A)} \\
& =\frac{\tan ^{2} A}{\tan A-1}+\frac{1}{\tan A(1-\tan A)} \\
& =\frac{\tan ^{3} A-1}{\tan A(\tan A-1)} \\
& =\frac{(\tan A-1)\left(\tan ^{2} A+\tan A+1\right)}{\tan A\left(\tan ^{2} A-1\right)}\left[\mathrm{a}^{3}-\mathrm{b}^{3}=(\mathrm{a}-\mathrm{b})\left(\mathrm{a}^{2}+\mathrm{ab}+\mathrm{b}^{2}\right)\right] \\
& =\frac{\tan { }^{2} A+\tan A+1}{\tan A} \\
& =\tan A+1+\cot A \\
& =\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}+1 \\
& =\frac{\sin ^{2} A+\cos A}{\sin A \cos A}+1 \\
& =\frac{1}{\sin A \cos A}+1 \\
& =\sec A \operatorname{cosec} A+1 \\
& =\text { R.H.S }
\end{aligned}
$$

Given: $\cot \theta=\frac{7}{8}$
To Evaluate: $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$
$=\frac{1-\sin ^{2} \theta}{1-\cos ^{2} \theta}=\frac{\cos ^{2} \theta}{\sin ^{2} \theta}$
$=\cot ^{2} \theta$
$=\left(\frac{7}{8}\right)^{2}$
$=\frac{49}{64}$
26.

$\angle O A P=90^{\circ}$
in $\triangle O A P$.
By applying Pythagoras theorem, we get
$\Rightarrow 17^{2}=r^{2}+15^{2}$
$\Rightarrow r^{2}=17^{2}-15^{2}=(17-15)(17+15)$
$=2 \times 32$
$\Rightarrow r^{2}=64 \Rightarrow r= \pm 8 \mathrm{~cm}$
we should not take negative value because length cannot be negative.
$\Rightarrow \mathrm{r}=8 \mathrm{~cm}$
27. Let $3+5 \sqrt{2}$ be rational and have only common factor 1 .

Let, $3+5 \sqrt{2}=\frac{a}{b}$
$5 \sqrt{2}=\frac{a}{b}-3$
$\sqrt{2}=\frac{a-3 b}{5 b}$
If $\frac{a-3 b}{5 b}$ is rational so, $\sqrt{2}$ is also rational number but it is not true as $\sqrt{2}$ is an irrational number.
So it is a contradiction to our assumption,
Therefore, $3+5 \sqrt{2}$ is an irrational number.
28. Let the length of the sides of the right triangle be $x \mathrm{~cm}$ and $(x+5) \mathrm{cm}$. Given, length of hypotenuse $=25 \mathrm{~cm}$.

According to Pythagoras theorem;
$\boldsymbol{p}^{\mathbf{2}}+\boldsymbol{b}^{\mathbf{2}}=\boldsymbol{h}^{\mathbf{2}}$ (where, p, b \& h are respectively perpendicular, base \& hypotenuse of right angled triangle)
$\therefore \mathrm{x}^{2}+(\mathrm{x}+5)^{2}=(25)^{2}$ [Using pythagoras theorem]
$\Rightarrow x^{2}+x^{2}+25+10 x=625$
$\Rightarrow 2 x^{2}+10 x+25-625=0$
$\Rightarrow 2 \mathrm{x}^{2}+10 \mathrm{x}-600=0$
$\Rightarrow 2\left(x^{2}+5 x-300\right)=0$
$\Rightarrow \mathrm{x}^{2}+5 \mathrm{x}-300=0$
$\Rightarrow \mathrm{x}^{2}+20 \mathrm{x}-15 \mathrm{x}-300=0$
$\Rightarrow \mathrm{x}(\mathrm{x}+20)-15(\mathrm{x}+20)=0$
$\Rightarrow(x+20)(x-15)=0$
$\Rightarrow x-15=0[\because$ Length can never be negative $\therefore x+20 \neq 0]$
$\Rightarrow x=15 \mathrm{~cm}$
$\therefore \mathrm{x}+5=15+5=20 \mathrm{~cm}$
Hence, the lengths of required sides are 15 cm and 20 cm .

OR

Consider $\frac{1}{2 a+b+2 x}=\frac{1}{2 a}+\frac{1}{b}+\frac{1}{2 x}$
$\Rightarrow \frac{1}{2 a+b+2 x}-\frac{1}{2 x}=\frac{1}{2 a}+\frac{1}{b}$
$\Rightarrow 2 a b(2 x-2 a-b-2 x)=(2 a+b) 2 x(2 a+b+2 x)$
$\Rightarrow 2 a b(-2 a-b)=2(2 a+b)\left(2 a x+b x+2 x^{2}\right)$
$\Rightarrow-a b=2 a x+b x+2 x^{2}$
$\Rightarrow 2 x^{2}+2 a x+b x+a b=0$
$\Rightarrow 2 \mathrm{x}(\mathrm{x}+\mathrm{a})+\mathrm{b}(\mathrm{x}+\mathrm{a})=0$
$\Rightarrow(2 x+b)(x+a)=0$
$\Rightarrow \mathrm{x}=-\mathrm{a},-\frac{\mathrm{b}}{2}$
Hence the roots are $-a,-\frac{b}{2}$.
29. Let α, β and γ be the zeroes of $\mathrm{f}(\mathrm{x})$ and the zeroes are in AP.

Suppose $\alpha=a-d, \beta=a$ and $\gamma=a+d$
$f(x)=x^{3}-12 x^{2}+39 x-28$
$\therefore \alpha+\beta+\gamma=-\left(\frac{-12}{1}\right)=12$
and, $\alpha \beta \gamma=-\left(\frac{-28}{1}\right)=28$
From equation (1), we have
$a-d+a+a+d=12$
$3 a=12 \Rightarrow a=4$.
Now from equation (2), we have
(a-d)a(a+d) $=28$
$a\left(a^{2}-d^{2}\right)=28$
$4\left(16-d^{2}\right)=28$
$16-d^{2}=7$
$d^{2}=9$
$d= \pm 3$
Case I: When $\mathrm{a}=4$ and $\mathrm{d}=3$: In this case,
$\alpha=a-d=4-3=1, \beta=a=4$ and $\gamma=a+d=7$
CASE II: When $a=4$ and $d=-3$: In this case,
$\alpha=a-d=4-(-3)=7, \beta=a=4$ and $\gamma=a+d=4-3=1$
Hence, in either case the zeroes of the given polynomial are 1,4 and 7.
30. Given: D is the mid-point of side $B C, E$ is mid-point of $A D, B E$ produced meets $A C$ at M.

To prove: $\mathrm{BE}=3 \mathrm{EM}$
Construction: Draw DN || BM

Proof: In $\triangle \mathrm{ADN}, \mathrm{EM} \|$ DN (construction)
$\therefore \quad \triangle \mathrm{AEM} \sim \triangle \mathrm{ADN}$ (AA similarity)
$\therefore \quad \frac{E M}{D N}=\frac{A E}{A D}$ (By BPT)
But $A D=2 A E$
$\therefore \quad \frac{\mathrm{EM}}{\mathrm{DN}}=\frac{\mathrm{AE}}{2 \mathrm{AE}}$
$\therefore \mathrm{DN}=2 \mathrm{EM} .$. (i)
In $\triangle \mathrm{BCM}, \mathrm{DN} \| \mathrm{BM}$ (construction)
$\therefore \quad \triangle C D N \sim \triangle C B M$ (AA similarity)
$\therefore \quad \frac{\mathrm{DN}}{\mathrm{BM}}=\frac{\mathrm{CD}}{\mathrm{CB}}$ (by BPT)
But $C B=2 C D$
$\therefore \quad \frac{\mathrm{DN}}{\mathrm{BM}}=\frac{\mathrm{CD}}{2 \mathrm{CD}}$
$\therefore \mathrm{BM}=2 \mathrm{DN}$..(ii)
from (i) and (ii).
$B M=2(2 E M)$
$\therefore B M=4 E M$
$\therefore \mathrm{BE}=\mathrm{BM}-\mathrm{EM}=4 \mathrm{EM}-\mathrm{EM}=3 \mathrm{EM}$. Hence proved
OR

Given $\mathrm{A} \triangle A B C$ in which $\mathrm{AB}=\mathrm{AC}$ and D is a point on AC such that $B C^{2}=A C \times D C$.
To Prove BD $=\mathrm{BC}$
Proof $B C^{2}=A C \times D C$ (given)
$\Rightarrow \frac{B C}{D C}=\frac{A C}{B C}$
Thus, in $\triangle A B C$ and $\triangle B D C$, we have
$\frac{B C}{D C}=\frac{A C}{B C}$ and $\angle C=\angle C$ (common).
$\therefore \quad \triangle A B C \sim \triangle B D C$ [by SAS-similarity].
$\begin{array}{ll}\Rightarrow & \frac{A C}{B C}=\frac{A B}{B D} \\ \Rightarrow & \frac{A C}{B C}=\frac{A C}{B D}[\because A B=A C \text { (given) }]\end{array}$
$\Rightarrow \mathrm{BD}=\mathrm{BC}$
Hence BD = BC.
31. Number of possible outcomes $=50$

Numbers which are multiple of 3 and 4 from 1 to 50 are $=12,24,36$ and 48
No. of favorable outcomes $=4$
$P($ the selected number is multiple of 3 and 4$)=\frac{4}{50}=\frac{2}{25}$
32. Let AB be the lamp-post and CD be the girl.

Let $C E$ be the shadow of $C D$. Then,
$C D=1.5 \mathrm{~m}, \mathrm{CE}=4.5 \mathrm{~m}$ and $\mathrm{AC}=3 \mathrm{~m}$.
Let $\mathrm{AB}=\mathrm{hm}$.
Now, $\triangle A E B$ and $\triangle C E D$ are similar.
$\therefore \quad \frac{A B}{A E}=\frac{C D}{C E} \Rightarrow \frac{h}{(3+4.5)}=\frac{1.5}{4.5}=\frac{1}{3}$
$\Rightarrow h=\frac{1}{3} \times 7.5=2.5$
33. The given series is converted from inclusive to exclusive form and on preparing the frequency table, we get

Class	Frequency
$0.5-5.5$	3
$5.5-10.5$	8
$10.5-15.5$	13
$15.5-20.5$	18
$20.5-25.5$	28
$25.5-30.5$	20
$30.5-35.5$	13
$35.5-40.5$	8
$40.5-45.5$	6
$45.5-50.5$	4

Clearly, the modal class is 20.5-25.5, as it has the maximum frequency.
Now, x_{k} (lower limit of modal class) $=\mathbf{2 0 . 5}$, h (length of interval of modal class) $=5, \mathrm{f}_{\mathrm{k}}($
frequency of modal class) $=28, \mathrm{f}_{\mathrm{k}-1}$ (frequency of the class just preceding the modal class)
$=18 . \mathrm{f}_{\mathrm{k}+1}$ (frequency of the class just exceeding the modal class $)=20$
Mode (M_{0}) is given by the formula ,
$\mathrm{M}_{0}=x_{k}+\left\{h \times \frac{\left(f_{k}-f_{k-1}\right)}{\left(2 f_{k}-f_{k-1}-f_{k+1}\right)}\right\}$
$=20.5+\left[5 \times \frac{(28-18)}{(56-18-20)}\right]$
$=20.5+\left[\frac{5 \times 10}{18}\right]$
$=20.5+2.78$
$=23.28$
Hence, mode $=23.28$
34.

Let radius of semicircular region be r units.
Perimeter $=2 \mathrm{r}+\pi \mathrm{r}$
Let side of square be x units
Perimeter $=4 x$ units.
A.T.Q, $4 \mathrm{X}=2 \mathrm{r}+\pi \mathrm{r} \Rightarrow x=\frac{2 r+\pi r}{4}$

Area of semicircle $=\frac{1}{2} \pi r^{2}$
Area of square $=x^{2}$
A.T.Q, $x^{2}=\frac{1}{2} \pi r^{2}+4$
$\Rightarrow\left(\frac{2 r+\pi r}{4}\right)^{2}=\frac{1}{2} \pi r^{2}+4$
$\Rightarrow \frac{1}{16}\left(4 r^{2}+\pi^{2} r^{2}+4 \pi r^{2}\right)=\frac{1}{2} \pi r^{2}+4$
$\Rightarrow 4 r^{2}+\pi^{2} r^{2}+4 \pi r^{2}=8 \pi r^{2}+64$
$\Rightarrow 4 r^{2}+\pi^{2} r^{2}-4 \pi r^{2}=64$
$\Rightarrow r^{2}\left(4+\pi^{2}-4 \pi\right)=64$
$\Rightarrow r^{2}(\pi-2)^{2}=64$
$\Rightarrow r=\sqrt{\frac{64}{(\pi-2)^{2}}}$
$\Rightarrow r=\frac{8}{\pi-2}=\frac{8}{\frac{22}{7}-2}=7 \mathrm{~cm}$
Perimeter of semicircle $=2 \times 7+\frac{22}{7} \times 7=36 \mathrm{~cm}$
Perimeter of square $=36 \mathrm{~cm}$
Side of square $=\frac{36}{4}=9 \mathrm{~cm}$
Area of square $=9 \times 9=81 \mathrm{~cm}^{2}$
Area of semicircle $=\frac{\pi r^{2}}{2}=\frac{22}{2 \times 7} \times 7 \times 7=77 \mathrm{~cm}^{2}$
35. Let the dimensions (i.e., length and width) of the garden be x and $y m$ respectively.

Then, $x=y+4$ and $\frac{1}{2}(2 x+2 y)=36$
$\Rightarrow x-y=4$
$x+y=36$.
Let us draw the graphs of equations (1) and (2) by finding two solutions for each of the equations. These two solutions of the equations (1) and (2) are given below in table 1 and table 2 respectively.
For equation (1)
$x-y=4$
$\Rightarrow y=x-4$
Table 1 of the solutions

\mathbf{x}	4	2
\mathbf{y}	0	-2

For equation (2) $x+y=36$
$\Rightarrow y=36-x$
Table 2 of the solutions

x	20	16
y	16	20

We plot the points $A(4,0)$ and $B(2,-2)$ on a graph paper and join these points to form the line $A B$ representing. The equation (1) as shown in the figure.
Also, we plot the points $C(20,16)$ and $D(16,20)$ on the same graph paper and join these points to form the line $C D$ representing the equation (2) as shown in the same figure.

In the figure, we observe that the two lines intersect at the point $C(20,16)$ So $x=20, y=16$ is the required solution of the pair of linear equations formed. i.e., the dimensions of the garden are 20 m and 16 m .
Verification : substituting $x=20$ and $y=16$ in (1) and (2), we find that both the equations are satisfied as shown below:

20-16 = 4
$20+16=36$
This verifies the solution.
36. Given: The height of the building is 7 m and the angle of elevation of the top of a tower is 60° and the angle of depression of its foot is 45°.

In $\triangle A B D, \angle A D B=\angle E A D=45^{\circ}$
(alternate angles)

$$
\begin{aligned}
& \therefore \quad \frac{A B}{B D}=\tan 45^{\circ} \\
& \mathrm{x}=7 \\
& \ln \triangle A E C, \frac{C E}{A E}=\tan 60^{\circ} \\
& \Rightarrow \quad \frac{h-7}{x}=\sqrt{3} \\
& \Rightarrow \quad h-7=x \sqrt{3} \\
& \Rightarrow \quad h-7=7 \sqrt{3} \text { (using } \mathrm{x}=7) \\
& \Rightarrow \quad h=7 \sqrt{3}+7 \\
& =7(\sqrt{3}+1) \\
& =7(1.732+1)
\end{aligned}
$$

Hence, the height of the tower $=19.124 \mathrm{~m}$

