Maths Revision Test Time: 1 hr Max Marks: 30

Q1. Verify whether the indicated numbers are zeroes of their corresponding polynomials.

(a)
$$Q(s) = -4s^3 + 7s^2 - 24$$
; $s = -4$ and 1
1 marks
 $P(t) = 8t^2 + 4t - 4$; $t = \frac{1}{2}$ and -1
(b) 1 marks

Q2. Using the long division method, determine the remainder when the polynomial $4x^6 + 2x^4 - x^6 +$

 $4x^2$ - 7 is divided by (x - 1).

3 marks

Q3. If $t + \frac{1}{t} = 8$, then find the value of $t^3 + \frac{1}{t^3}$. 4marks

Q4 In the given figure, \overrightarrow{PQ} and \overrightarrow{MN} intersect at O. (a) Determine y, when $x = 60^{\circ}$.

3 marks

(b) Determine x, when $y = 40^{\circ}$.

Q5 In the given figure, lines Ab, CD and EF intersect at O

Q6. In the given figure, POQ is a line. Ray $\overrightarrow{OR} \perp PQ$, \overrightarrow{OS} is another ray lying between

 $\angle ROS = \frac{1}{2} (\angle QOS - \angle POS).$ rays OP and OR . Prove that

3 marks

Q7. ABCD is a quadrilateral in which AD = BC and \angle DAB = \angle CBA. Prove that \triangle ABD $\cong \triangle$ BAC.

Q8. In the given figure, triangles PQC and PRC are such that QC = PR and PQ = CR. Prove that $\angle PCQ = \angle CPR$.

Q9. In the given figure, AB = AD, AC = AE and $\angle BAD = \angle EAC$, then prove that BC = DE.

