Maths Revision Test

Time: 45 mins

Max Marks: 30

Q1. Solve

(a) Find the value of k for which the cubic polynomial $3y^3 - \frac{3}{2}y^2 + ky + 5$ is exactly divisible

by
$$\left(y-\frac{1}{2}\right)$$
. 1 mark

(b) Factorize. $2y^3 - 4y^2 - 2y + 4$

1 marks

Q2. Factorize:

(i)
$$4x^2 + 9y^2 + 16z^2 + 12xy - 24yz - 16xz$$

(ii)
$$2x^2 + y^2 + 8z^2 - 2\sqrt{2} xy + 4\sqrt{2} yz - 8xz$$

3 marks

Q3. Using a suitable identity, determine the value of

A)
$$(17)^3 + (-12)^3 + (-5)^3$$

4marks

Q4 In the given figure, AB || CD \angle APQ =50 and \angle PRD = 127 find x and y.

3 marks

In figure, if AB || DE, \angle BAC = 35° and \angle CDE = 539 , find \angle DCE.

3 marks

Q6.

It is given that \angle XYZ = 64° and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects \angle ZYP, find \angle XYQ and reflex \angle QYP.

Solution:

XYP is a straight line.

3 marks

07

In an isosceles triangle ABC, with AB = AC, the bisectors of \angle B and \angle C intersect each other at 0. Join A to 0. Show that

- (i) OB = OC
- (ii) AO bisects ∠A

4 marks

Q8. In the given figure, AB = BC and $\angle ABO = \angle CBO$, then prove that $\angle DAB = \angle ECB$.

4 marks

Q9.

 Δ ABC and Δ DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see figure). If AD is extended to intersect BC at P, show that

- (i) $\Delta ABD \cong \Delta ACD$
- (ii) $\triangle ABP \cong \triangle ACP$
- (iii) AP bisects ∠A as well as ∠D
- (iv) AP is the perpendicular bisector of BC.

4 marks